If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10h^2+13h-30=0
a = 10; b = 13; c = -30;
Δ = b2-4ac
Δ = 132-4·10·(-30)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-37}{2*10}=\frac{-50}{20} =-2+1/2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+37}{2*10}=\frac{24}{20} =1+1/5 $
| 2x+6x-4=60 | | 5(4-2x)=-10x+100 | | -6x+2=-2x+10 | | j=25=64 | | w^2+3w;w=-3 | | 6q+6+3q=9q+6 | | 648/x=8.5 | | q-13=79 | | -33=a-18 | | 7x+9=360 | | q-13=79q= | | p−-334=386 | | -2k-4=-3-3k | | z/5-7=19 | | 6z-1=32 | | -3(y+3)=3y-9+2(5y+4) | | 3x+9+7x+9+28=180 | | 108/x=8.5 | | p−–334=386 | | x^2+20x=21x+6 | | 20-y/2=15 | | g-487=-270 | | -19-6d-19=20d+18 | | 19y-8=30.4 | | 4t=26 | | -3(6-2x)+23=4-{1}{3}(-18x-3) | | 4x²+10x-24=0 | | 4x-6=2(3x-3) | | (4x+10)=130 | | 19y-8=0.4 | | –19−6d−19=–20d+18 | | 2n−9)−5(−2.4n+4)=14n-29 |